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Abstract: 1 

Recent years have seen growing appreciation that rapidly intensifying “flash droughts” are 2 

significant climate hazards with major economic and ecological impacts. This has motivated 3 

efforts to inventory, monitor, and forecast flash drought events. Here we consider the question of 4 

whether the term “flash drought” comprises multiple distinct classes of event, which would imply 5 

that understanding and forecasting flash droughts might require more than one framework. To do 6 

this, we first extend and evaluate a soil moisture volatility-based flash drought definition that we 7 

introduced in previous work and use it to inventory the onset dates and severity of flash droughts 8 

across the Contiguous United States (CONUS) for the period 1979-2018. Using this inventory, we 9 

examine meteorological and land surface conditions associated with flash drought onset and 10 

recovery. These same meteorological and land surface conditions are then used to classify the flash 11 

droughts based on precursor conditions that may represent predictable drivers of the event. We 12 

find that distinct classes of flash drought can be diagnosed in the event inventory. Specifically, we 13 

describe three classes of flash drought: “dry and demanding” events for which antecedent 14 

evaporative demand is high and soil moisture is low, “evaporative” events with more modest 15 

antecedent evaporative demand and soil moisture anomalies, but positive antecedent evaporative 16 

anomalies, and  “stealth” flash droughts, which are different from the other two classes in that 17 

precursor meteorological anomalies are modest relative to the other classes. The three classes 18 

exhibit somewhat different geographic and seasonal distributions. We conclude that soil moisture 19 

“flash droughts” are indeed a composite of distinct types of rapidly intensifying droughts, and that 20 

flash drought analyses and forecasts would benefit from approaches that recognize the existence 21 

of multiple phenomenological pathways. 22 
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Introduction: 23 

In recent years, a number of rapid-onset drought events have struck the Contiguous United States 24 

(CONUS), with severe consequences for ecological and agricultural systems. For example, 25 

droughts in the Southern Plains in 2011, the central U.S. in 2012, the Southeast in 2016, the 26 

Northern Plains in 2017, and Texas in 2019 led to widespread crop losses, wildfires, and economic 27 

damages in the tens of billions of dollars. These droughts occurred at different times of the year in 28 

different climate zones with different ecological characteristics, yet they have all been described 29 

as flash droughts, a term first coined by Peters et al. (2002) and Svoboda et al. (2002) to reflect the 30 

fact that some droughts emerge rapidly and quickly develop into high impact extreme events. 31 

A challenging characteristic of flash droughts is that they appear suddenly—seemingly without 32 

warning—and therefore leave farmers, ranchers, and other vulnerable stakeholders little time to 33 

prepare mitigation responses (Otkin et al. 2015b, 2018a; Haigh et al. 2019). The 2012 flash 34 

drought, for example, received tremendous attention because of its impact on the nation’s corn 35 

crop. Yet there was virtually no sign of an impending rapid intensification prior to the event in 36 

standard drought monitoring products at that time or in dynamically-based seasonal forecasting 37 

systems (Hoerling et al. 2014). Post-event analyses concluded that the event was largely driven by 38 

random atmospheric variability, and perhaps was inherently unpredictable using conventional 39 

methods (Kumar et al. 2013). Poor model performance both in forecasting and reproducing these 40 

events presents an additional challenge in efforts to project flash drought impacts and feedbacks 41 

under nonstationary climate conditions (Wolf et al. 2016). Notwithstanding these challenges, there 42 

is evidence that flash droughts are amenable to seasonal-to-subseasonal scale prediction on 43 

account of their sensitivity to initial conditions (Lorenz et al. 2017a,b), the perceived importance 44 

of forecastable drivers of evaporative demand during flash drought intensification (Hobbins et al. 45 
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2016), and the potentially predictable role of vegetation in flash drought processes (Wolf et al. 46 

2016). 47 

Any such generalized statements on the predictability of flash droughts, however, implicitly 48 

assume that the occurrence and severity of flash droughts can be diagnosed in a consistent and 49 

process-relevant manner, and that the term “flash drought” refers to a single class of event. In 50 

recent years, many studies have sought to describe and diagnose the occurrence of flash droughts 51 

by proposing a variety of definitions that can be used to inventory and map flash droughts.  Otkin 52 

et al. (2013, 2014, 2015) identified flash droughts based on rapid changes in the ratio between 53 

actual evapotranspiration (EVP) and potential evapotranspiration (PEVP). Other studies (Hunt et 54 

al. 2014; Mo and Lettenmaier 2015) defined flash droughts as a function of the rapid drop in soil 55 

moisture with time. Chen et al. (2019) suggested the degradation of two categories in the U.S. 56 

Drought Monitor (USDM) in a period of four weeks as a definition for the onset of flash droughts. 57 

Christian et al. (2019) introduced the definition for flash droughts based on the rate of change in 58 

standardized ratio between EVP and PEVP over a six-pentad (6 x 5-day) period. Another 59 

quantitative definition (Ford and Labosier 2017) identified flash droughts as the drop of the one 60 

pentad averaged soil moisture (SM) from the 40th to 20th percentiles in a period of four pentads or 61 

less. A subsequent study by Hoffmann et al. (2021) followed a similar methodology with 62 

adjustments to reduce the number of identified events. In a recent study, (Osman et al. 2021) 63 

introduced a definition based on a soil moisture volatility index (SMVI), and also compared the 64 

SMVI with six other definitions to highlight the fact that there are different pathways to identify 65 

flash drought onset. All of the listed studies focused on CONUS, but the flash drought phenomenon 66 

has been observed in many regions across the globe (Nguyen et al. 2019; Zhang and Yuan 2020), 67 

with a number of studies focusing on China and India (Wang et al. 2016; Yuan et al. 2019; Mahto 68 
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and Mishra 2020). These studies have yielded additional definitions. Indeed, the need to 69 

understand the implications of different definitions has become a research question in its own right 70 

(Lisonbee et al. 2021). 71 

Fewer studies have attempted to quantify the severity of the flash droughts, but informative efforts 72 

do exist. Chen et al. (2019)  and Otkin et al. (2015) both used USDM categories to diagnose and 73 

assess severity of flash droughts. Christian et al. (2019) used Standardized Evaporative Stress 74 

Ratio (SESR) for both purposes, Yuan et al. (2019) used soil moisture deficit, and Li et al. (2020) 75 

used evapotranspiration deficit. Based on modeled soil moisture, Otkin et al. (2021) developed a 76 

flash drought intensity index (FDII) that explicitly accounts both for the magnitude of the rapid 77 

intensification and the resultant drought severity when determining the intensity of a flash drought. 78 

Their study showed that there are important regional differences in flash drought severity when 79 

both of these components are considered. 80 

Most proposed definitions and intensity metrics for flash droughts have focused exclusively on 81 

capturing the phenomenon rather than assessing whether it represents a coherent class from the 82 

perspective of drought process. An exception is the work of Mo & Lettenmaier (2015, 2016), 83 

which explicitly distinguished between precipitation deficit flash droughts and heat wave flash 84 

droughts. The method used to define these droughts has been debated, in large part because Mo & 85 

Lettenmaier consider duration of the heatwave event rather than intensification rate, which is more 86 

typically understood to be the defining characteristic of flash drought (Otkin et al. 2018b; Lisonbee 87 

et al. 2021), but their concept that flash droughts might be the product of multiple different 88 

pathways with distinct meteorological drivers is highly relevant to understanding and prediction. 89 

While Mo & Lettenmaier made this distinction a priori by incorporating different variables and 90 

thresholds in their definitions, we are not aware of any study that empirically classifies different 91 



6 

flash drought types within an inventory generated using a common flash drought definition. That 92 

is: if an inventory of flash drought events is generated using a definition based on flash drought 93 

phenomenology alone, are there distinct classes within that inventory that can be identified due to 94 

different precursors in meteorology or surface conditions? If so, that implies that understanding 95 

and predicting flash droughts may require that we adopt different perspectives for each class.  96 

Here, we apply our recently introduced SMVI flash drought definition (Osman et al. 2021) to 97 

address this question. First, we extend the SMVI presented in Osman et al. (2021) to include 98 

estimates of drought severity, and we compare the SMVI to independent vegetation and crop 99 

datasets for seminal flash drought events. Next, we apply a retrospective inventory of flash 100 

droughts, generated using SMVI, to derive composites of meteorological and surface conditions 101 

in the pre-drought, onset, and recovery phases of all flash droughts. Finally, we perform objective 102 

classification of the flash drought inventory on the basis of meteorological and surface condition 103 

precursors to identify flash drought classes relevant to process understanding and prediction.    104 

Data and Methods: 105 

We generate an inventory of soil moisture flash droughts for all of CONUS over the period 1979-106 

2018 for spring through fall (March-November). SMVI is calculated using root zone soil moisture 107 

(RZSM) from the SMERGE dataset. SMERGE is a hybrid daily product at 0.125° spatial 108 

resolution that combines satellite-derived soil moisture estimates from the European Space Agency 109 

Climate Change Initiative and NLDAS-2 NOAH model output for RZSM averaged from 0-40 cm 110 

depth (Tobin et al. 2019). The SMERGE dataset has been evaluated against Normalized Difference 111 

Vegetation Index (NDVI) products (Rouse et al. 1974) as well as in situ soil moisture observations, 112 
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and it has been found to be a reliable dataset for agricultural and ecological applications (Tobin et 113 

al. 2019). 114 

The SMVI is motivated by the fact that flash drought diagnosis is concerned with capturing change 115 

that is more rapid than usual, so that it could be used to identify both rapid onset and rapid 116 

intensification drought events. For SMVI, rapid changes are identified by the crossover of simple 117 

moving averages (SMA’s) combined with duration and dryness thresholds. Onset is recorded 118 

when: (1) The 5-day (1-pentad) RZSM SMA falls and stays below the 20-day (4-pentad) SMA for 119 

at least a 20-day period; (2) both SMA’s are below the 20th percentile of the 1979 to 2018 time-120 

of-year RZSM climatology (Osman et al. 2021). If two sequential flash droughts are identified 121 

with a period of three pentads or less between them, then they are combined into a single event. 122 

We do this because a short rainfall event may result in a temporary reduction in the severity of a 123 

flash drought but is often not sufficient to restore pre-drought conditions and end the drought event.  124 

Severity is quantified based on RZSM deficit during the identified flash drought event according 125 

to Eq. 1 and Eq. 2 as illustrated in the example in Fig. S1. This scale is based on the standardized 126 

distribution of the integrated RZSM deficit below the 20th percentile (and over the 5-day running 127 

average) during the drought event. 128 

𝑆𝑉 = ∑ (𝑅𝑍𝑆𝑀20𝑡ℎ − 𝑅𝑍𝑆𝑀5𝑑)
𝑡=𝑡𝑓

𝑡=𝑡𝑜
    Equation 1 129 

𝑆𝑉𝐶𝐴𝑇 =
𝑆𝑉

𝑆𝑇𝐷(𝑆𝑉1979−2018)
     Equation 2 130 

where 𝑆𝑉 is the computed severity, and 𝑅𝑍𝑆𝑀20𝑡ℎ and 𝑅𝑍𝑆𝑀5𝑑 are the 20th percentile and 5-day 131 

moving average RZSM, respectively. 𝑡𝑜 𝑎𝑛𝑑 𝑡𝑓 represent the times at which identified flash 132 

drought onset occurs and ends, respectively. The standardized severity category is represented by 133 
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𝑆𝑉𝐶𝐴𝑇 with a range between zero (no flash drought) up to 5 (maximum severity), and 134 

𝑆𝑇𝐷(𝑆𝑉1979−2018) is the severity standard deviation calculated from the flash drought inventory 135 

for all grid points, measured against the severity of all other identified flash drought events within 136 

the inventory. The use of categories to indicate drought severity is a common approach, as used in 137 

systems such as the USDM. In contrast to the USDM, the SMVI-based severity is intended to 138 

capture the severity of the rapid onset flash drought process. 139 

The end of the flash drought period (recovery period) date is identified when the rate of drop in 140 

RZSM during an identified flash drought event begins to recover (i.e., the 1-pentad running 141 

average is no longer below 4-pentad running average) or the 1-pentad RZSM is no longer below 142 

the 20th percentile of the 1979 to 2018 time-of-year RZSM. 143 

SMVI performance was previously evaluated based on descriptions of reported major flash 144 

drought events (Osman et al. 2021). Influenced by the methodology followed by Peters et al. 145 

(2002) to detect drought using standardized NDVI, in this study we use MODIS NDVI time-of-146 

year anomalies to assess the method’s skill to capture changes in satellite-observed vegetation 147 

greenness due to flash drought. The cloud-free NDVI data were obtained from the 16-day MODIS 148 

composite product (MOD13C1) at 0.05° spatial resolution (Didan 2021) for the years 2000 to 149 

present. NDVI grid points with anomalies below -0.5 standard deviation from the mean are defined 150 

as “negatively impacted” in comparisons with SMVI. This approximately corresponds to a 151 

probability of occurrence less than 30% for normally distributed conditions. Further, we evaluate 152 

the performance of the SMVI definition for the 2012 central US and 2017 Northern Plains flash 153 

droughts versus in situ reports of soil and crop conditions collected by the USDA National 154 

Agricultural Statistics Service (NASS) observers. Data showing poor conditions are marked as 155 

negatively impacted. These data are collected at county scale, then spatially smoothed to reduce 156 
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noise, and protect confidentiality (Access to data at county level was provided to the co-authors 157 

after signing a confidentiality agreement with the USDA NASS). The performance analyses are 158 

carried out for the spring and summer seasonal averages due to data availability and temporal 159 

resolution. 160 

The performance of the SMVI is assessed with hit-miss confusion matrices that use NDVI and 161 

NASS data as observational reference datasets. True positive values represent grid points and 162 

pentads depicted by SMVI as being in flash drought and also marked as negatively impacted by 163 

the NASS or NDVI validation datasets, while false positives are the events classified as flash 164 

drought by SMVI where NASS or NDVI do not meet drought impact criteria. True negative values 165 

represent grid points not marked as negatively impacted by the NASS or NDVI validation datasets 166 

and not identified as flash drought grid points. False negatives represent grid points identified by 167 

SMVI as having no flash drought while marked as negatively impacted by the NASS or NDVI 168 

validation datasets. Hit-miss statistics are calculated according to Eq. 3 to Eq. 10. 169 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑇𝑃𝑅) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
      Equation 3 170 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝑇𝑁𝑅) =
𝑇𝑁

𝑇𝑁+𝐹𝑃
      Equation 4 171 

𝐹𝑎𝑙𝑠𝑒 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑦 𝑟𝑎𝑡𝑒 (𝐹𝐷𝑅) =
𝐹𝑃

𝐹𝑃+𝑇𝑃
    Equation 5 172 

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑁𝑅) =
𝐹𝑁

𝐹𝑁+𝑇𝑃
    Equation 6 173 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑃𝑅) =
𝐹𝑃

𝐹𝑃+𝑇𝑁
    Equation 7 174 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃𝑃𝑉) =
𝑇𝑃

𝑇𝑃+𝐹𝑃
      Equation 8 175 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝐶𝐶) =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
     Equation 9 176 

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝐼𝑛𝑑𝑒𝑥 (𝐶𝑆𝐼) =
𝑇𝑃

𝑇𝑃+𝐹𝑁+𝐹𝑃
    Equation 10 177 

where, 𝑇𝑃, 𝑇𝑁, 𝐹𝑃 𝑎𝑛𝑑 𝐹𝑁 represent true positive, true negative, false positive and false negative 178 

grid points, respectively. Values of Eq. 3 to Eq. 10 range from 0 to 1, with 1 being the perfect score 179 

for the TP or TN numerator-based ratios and the opposite for the FP and FN numerator-based 180 

ratios. 181 

Drawing on previous studies that have described meteorological and surface conditions associated 182 

with flash drought onset (Mo and Lettenmaier 2015, 2016; Ford and Labosier 2017; He et al. 2019; 183 

Osman et al. 2021), we select multiple variables from the NLDAS-2 datasets (temperature, 184 

precipitation, RZSM, PEVP, EVP, and surface pressure) along with the computed vapor pressure 185 

deficit (VPD) and total cloud cover (TCC) from NCEP/NCAR Reanalysis Products (Kalnay et al. 186 

1996), and analyze their progression through the pre-drought, onset and end of the flash drought 187 

periods for all events included in the 40-year (1979-2018) SMVI-derived flash drought inventory. 188 

In order to focus on events with meaningful impact, we analyze only SMVI-derived flash drought 189 

events with severity greater than 2. Unsupervised multivariate classification is then performed as 190 

a function of these meteorological variables, using principal components transformation to control 191 

for collinearity between variables. This classification is used to characterize different types of flash 192 

droughts driven by different processes. The classes are determined using the K-means partitioning 193 

unsupervised classification algorithm (Hartigan and Wong 1979; Lloyd 1982) as a heuristic 194 

clustering method. We apply a sensitivity analysis to determine the statistically optimal number of 195 

clusters. The anomalies are calculated as the in-time (pre-drought, onset, or recovery) pentad 196 

anomaly relative to the 1979-2018 time-of-year average. The K-means algorithm allows the user 197 
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to set the number of classes subjectively, but there are recommended diagnostics for use in 198 

choosing the optimal number of classes. Here we apply the commonly-used Elbow method 199 

(Thorndike 1953) for this purpose.  200 

Results and Discussion: 201 

The SMVI flash drought intensity metric 202 

The United States was hit by several major flash drought events over the past decade, resulting in 203 

excessive agricultural losses and livestock destruction. In 2012, the country experienced one of the 204 

largest and most destructive flash droughts recorded to date, with more than $30 billion estimated 205 

damages (Hoerling et al. 2013, 2014; Basara et al. 2019; Mallya et al. 2013; Fuchs et al. 2012; 206 

Otkin et al. 2016). A warm spring followed by early summer heatwaves set the stage for a rapidly 207 

intensifying drought that struck much of the middle part of the country in late spring and early 208 

summer and extended to the north later in summer and in early fall (Fig. 1a). Notably, though the 209 

occurrence of flash drought was very widespread (according to both SMVI and other definitions) 210 

(Osman et al. 2021), the central US had the greatest severity, as diagnosed by the SMVI (Fig, 1c).  211 

Five years after the 2012 flash drought, the Northern Plains region was hit by another major flash 212 

drought, causing more than $2.6 billion agricultural losses, and sparking wildfires. The 2017 213 

Northern Plains flash drought was focused on Montana, North Dakota, South Dakota, and parts of 214 

Alberta and Saskatchewan (Jencso et al. 2019). The event started in May over western Montana 215 

and swiftly intensified through high evaporative demand and precipitation deficits (Hoell et al. 216 

2019a; Osman et al. 2021). The drought eventually spread over much of the Northern Plains region 217 

(Fig. 1b) causing enormous economic losses (Gerken et al. 2018; Jencso et al. 2019; He et al. 218 

2019). Montana was the most impacted state (Jencso et al. 2019), and this is evident in the SMVI-219 
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based severity analysis (Fig. 1d). The severity analysis is also consistent with the USDM reports 220 

that showed an exceptional (D4 category) drought over Montana (Jencso et al. 2019). It is 221 

important to highlight that estimation of flash droughts’ severity in this study is a method to 222 

relatively quantify soil moisture deficit with a methodology similar to Yuan et al. (2019) study 223 

given the different flash drought identification method. 224 

Independent, quantitative validation of drought indices is notoriously difficult, since impacts of 225 

drought vary with climate context, land cover, and economic system. Since flash drought is a 226 

subset of all droughts which is typically considered in agricultural and ecological contexts (Wang 227 

et al. 2016; Mo and Lettenmaier 2015; Christian et al. 2019; Otkin et al. 2018b), we consider 228 

vegetation health and crop status to be two relevant indicators of drought impact that can verify 229 

the utility of SMVI as a useful drought metric. In doing this, we recognize that the independent 230 

comparisons do not necessarily confirm the presence of flash drought; rather, they are interpreted 231 

as indicators of whether an agricultural drought may have occurred.  232 

With this caveat in mind, we compare the SMVI flash drought index to MODIS NDVI anomalies 233 

and NASS crop and topsoil condition anomalies. Using a simple hit/miss metric in which negative 234 

anomalies in MODIS NDVI (more than 0.5 standard deviation below the mean) or the NASS 235 

condition maps are interpreted as evidence of drought conditions, we find that there is broad 236 

agreement between the SMVI and observed drought conditions for both the 2012 and 2017 flash 237 

drought events (Fig. 1 and Fig. 2). We do see considerable false negatives on the margins of the 238 

drought-affected area, particularly in 2012, but this is consistent with our liberal definition of 239 

agricultural drought in the NDVI and NASS fields (i.e., flash drought identified area is smaller 240 

than NDVI and NASS negative anomalies). We also note a concentration of false positives along 241 
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edge of drought regions, particularly in 2017, indicate that the SMVI approach overestimated the 242 

extent of drought-affected area relative to NASS estimates. 243 

Focusing on the Central and Northern High Plains regions (as defined by Bukovsky (2011)) for 244 

the years 2012 and 2017, respectively, we find that for flash droughts based on negative NDVI 245 

anomalies the accuracy was 0.68 in 2012 and 0.56 in 2017. Precision was higher in 2012 (0.74) 246 

than 2017 (0.50), while the probability of detection (sensitivity) was higher in 2017: 0.93, versus 247 

0.81 in 2012 (Tables 1&2). The Critical Success Index was  significantly higher for the 2012 event 248 

(0.63) compared to that observed in 2017 (0.48). These values of hit-miss statistics are consistent 249 

with  moderate to strong performance in event identification  (Hoerling et al. 2013, 2014; Basara 250 

et al. 2019; Mallya et al. 2013; Fuchs et al. 2012; Otkin et al. 2016; Gerken et al. 2018; Jencso et 251 

al. 2019; He et al. 2019). It is important to note that this is an imperfect comparison. The SMVI 252 

approach is one pathway of identifying flash droughts, and a comparison with a vegetation index 253 

metric, such as NDVI anomalies, is not exactly indicative of performance in capturing a soil 254 

moisture flash drought. 255 

NASS-based evaluation, based on NASS identification of poor crop and soil conditions, led to 256 

comparable statistics for each impacted region’s dominant crop (Fig. 2c – 2f). Tables 1 and 2 257 

summarize SMVI-NASS statistics for both the 2012 and 2017 flash droughts. In the 2012 central 258 

US flash drought, SMVI shows an accuracy of 0.79, 0.75 and 0.74 for negatively impacted 259 

soybean, range, and corn, with a precision of 0.84, 0.79 and 0.89, respectively. The 2017 Northern 260 

Plains flash drought captured by SMVI is similarly evaluated and statistical evaluation was slightly 261 

higher than that seen for the NDVI analysis. Accuracy for detecting grids of flash drought in the 262 

Northern Plains compared to negatively impacted dominant crops (barley and spring wheat) are 263 

0.8 and 0.76, respectively, with precision values of 0.91 and 0.88, and probability of detection 264 
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greater than 0.84. Comparing SMVI to the reported NASS topsoil moisture conditions shows a 265 

very similar pattern for the negatively reported conditions. The accuracy and precision of SMVI 266 

detection of the reported negative NASS topsoil moisture conditions for the 2012 flash drought 267 

event are 0.77 and 0.95, respectively, and they are 0.84 and 0.95 for the 2017 event. We also note 268 

that irrigation is a complicating factor that may affect comparison between datasets. While SMVI 269 

does include partial consideration of irrigation, insomuch as SMERGE captures irrigation signals, 270 

this representation is imperfect and might not align with observed vegetation response to irrigation. 271 

Proposed drivers of flash drought: 272 

Figure 3 presents composites of pre-drought (onset minus three pentads), onset, and recovery 273 

period conditions, using composites of standardized anomalies of meteorological fields for all flash 274 

droughts of severity greater than ‘2’ in the SMVI-derived 1979-2018 inventory. Composites are 275 

calculated separately for each grid cell, such that the anomalies represent conditions when a flash 276 

drought occurred in that exact location. Precipitation (PRCP) anomalies in the pre-drought and 277 

onset periods are mostly negative, as one would expect, which is also associated with suppression 278 

of the convective available potential energy (CAPE) over most of CONUS (we include CAPE in 279 

addition to precipitation in order to isolate local convective potential as distinct from total realized 280 

rainfall). This is similar to the observed scenario before and during the 2017 northern High Plains 281 

flash drought (Gerken et al. 2018). The magnitude of these standardized anomalies, however, is 282 

generally small relative to the anomalies in RZSM and potential evaporation (PEVP), particularly 283 

during the pentad of drought onset.  284 

These findings are consistent with previous studies (Otkin et al. 2018b, 2013; Anderson et al. 285 

2013), which have emphasized the importance of precursor soil moisture conditions and PEVP in 286 
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the onset of a flash drought. Low RZSM, high PEVP and high VPD conditions force the rapid 287 

transition from an energy limited environment to a water limited environment, leading to rapid 288 

drought onset and loss of green cover (Otkin et al. 2018b). This elevated PEVP only leads to an 289 

increase in actual evapotranspiration (EVP) in regions with greater water variability—e.g., the 290 

Midwest and Great Lakes regions. In more water limited environments the EVP anomalies are 291 

negative in the pre-drought and onset periods, as elevated PEVP cannot translate into an increase 292 

in EVP. As described later, this distinction is important when considering process-based flash 293 

drought classification: the concept that elevated PEVP leads to elevated EVP, drying the soil 294 

column, is an important aspect of some theories of vegetation-mediated flash drought 295 

intensification  (Otkin et al. 2018b), but it is not a feature of all events in our inventory.  296 

Other potential predictor variables show regionally variable signals. Temperature (TEMP), often 297 

identified as a driver of flash drought, is generally elevated in the pre-drought period, but the 298 

anomalies are weak, and the sign of anomaly is not entirely consistent. It is only during the onset 299 

pentad that elevated temperatures are observed over most regions (though even then the southeast 300 

is not particularly anomalously warm). Surface pressure (SPRES) might be expected to be 301 

anomalously high in the lead-up to a drought, but the anomalies are weak and mixed over much 302 

of the country, as is the average near-surface wind speed (WS). TCC tends towards negative 303 

anomalies in pre-drought and onset periods, matching expectation, but again there are weak or 304 

mixed anomalies for a number of regions. 305 

Considering the recovery pentad, which is defined as the first pentad in which any of the onset 306 

conditions is violated, it is evident that the role of rainfall is significant in ending the flash drought. 307 

Both PRCP and TCC show strong positive anomalies in recovery, which stands in contrast to the 308 

modest anomalies seen during the pre-drought and onset periods. Rain breaks the flash drought 309 
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cycle, quickly switching environmental conditions to a non-water-limited status, provided that the 310 

volume of rain is sufficient. TEMP, PEVP, EVP, VPD and SPRES anomalies are mixed during 311 

the recovery period. RZSM anomalies are still strongly negative, reflecting the fact that we have 312 

defined the recovery (end of flash drought period) based on the change in rate of declination or if 313 

RZSM higher than the 20th percentile, which are still below normal conditions but no longer a flash 314 

drought. It is worth emphasizing that these composites are based on our SMVI flash drought 315 

definition; analyses that use different definitions might lead to different conclusions. That said, 316 

Ford and Labosier (2017) examine some of the same variables and found broadly similar patterns 317 

using a different flash drought definition formulation based on the drop in RZSM from the 40th to 318 

the 20th percentile in a period that does not exceed four pentads. 319 

Flash drought classification 320 

The composite analysis of conditions at different stages of flash droughts shown in the previous 321 

section provides a useful perspective on the flash drought development process; however, it does 322 

not consider the possibility that the inventoried flash droughts consist of distinct forms of drought 323 

development. It is therefore possible that the weak or mixed anomalies found for certain proposed 324 

drivers are simply an artifact of averaging across different types of events, blurring the influence 325 

of hydrometeorological drivers in different drying scenarios.  326 

To test this hypothesis, we perform K-means classification on our SMVI based flash drought 327 

inventory. We use onset pentad standardized anomalies for the nine variables applied in composite 328 

analysis (TMP, PRCP, RZSM, EVP, PEVP, SPRES, TCC, WS, CAPE and VPD) as the basis for 329 

classification, and first mask out unvegetated classes (bare soil and urban classes) and potentially 330 

deep-rooted vegetation classes (forest and woodland classes) according to the University of 331 
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Maryland (UMD) Land Cover Classification (Figure S2). Only events with severity greater than 332 

‘2’ are included in the classification, and we perform principle components analysis on 333 

meteorological variables prior to classification. Using the Elbow method (Thorndike 1953), we 334 

find that three classes are optimal (Figure S3). We emphasize that our classification is intended to 335 

draw out indicative patterns and is not meant to imply that the three classes are entirely separable 336 

or independent phenomena. The use of a different dataset of meteorological variables, study 337 

region, or flash droughts identification method may lead to a different number of classes. 338 

The character of each class with respect to precursor soil moisture conditions and meteorology in 339 

the pentads leading up to event onset is shown in Figure 4. Notably, Classes 2 and 3 are 340 

characterized by elevated air temperature (TMP) and vapor pressure deficit (VPD) prior to flash 341 

drought onset, while Class 1 is not. And while Class 2 and 3 have similar TMP anomalies, Class 342 

2 exhibits substantially more severe antecedent VPD than Class 3, as well as stronger positive 343 

potential evapotranspiration (PEVP) anomalies and stronger negative root zone soil moisture 344 

(RZSM) and total cloud cover (TCC) anomalies. Class 3, meanwhile, is the only class that shows 345 

positive anomalies in antecedent actual evapotranspiration (EVP) and in CAPE, and its negative 346 

precipitation (PRCP) anomalies are modest relative to the other two classes.  347 

These systematic differences between classes suggests that flash droughts can be triggered by a 348 

diversity of meteorological conditions. Class 2 bears the most classic signatures of drought, with 349 

its dry antecedent conditions, high temperature and evaporative demand conditions, low cloud 350 

cover, and reduced total evapotranspiration. From a flash drought perspective, these can be thought 351 

of as “dry and demanding” events, in which atmospheric evaporative demand combines with low 352 

rainfall and dry pre-drought conditions to allow for rapid intensification of already dry conditions.  353 

Notably, PEVP anomalies for these events tend to be quite high, but EVP anomalies are strongly 354 
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negative on account of the prevailing dry conditions prior to drought onset. It is important to 355 

emphasize that our interpretation of the different classes is based on the mean value, which adds a 356 

margin of uncertainty in classifying an identified flash drought event. Figure 5b shows composite 357 

time series of key variables for 20 grid cells picked from the core of different Class 2 drought 358 

events. As indicated in these time series, TMP, VPD, and PEVP are all elevated in the four pentads 359 

before flash drought onset while EVP anomalies are consistently negative over this period. PRCP 360 

anomalies are generally negative, with some noise evident in this 20 grid cell sample, while NDVI 361 

and RZSM anomalies are strongly negative even four pentads before onset date.  362 

In contrast to the classic drought character of Class 2, Class 3 bears some surprising features. The 363 

fact that the events intensify rapidly even though, on average, the antecedent PRCP anomalies are 364 

modest and CAPE is enhanced, suggest that for these events rapid drying is largely driven by 365 

evaporative demand (positive VPD and PEVP anomalies) combined with sufficient moisture 366 

access to support elevated EVP. This combination makes Class 3 the only class to exhibit 367 

anomalies consistent with the hypothesis that vegetation can contribute to flash drought onset by 368 

responding to elevated temperature and evaporative demand with increased evapotranspiration, 369 

accelerating depletion of root zone soil moisture. Based on these characteristics, we term Class 3 370 

events “evaporative” flash droughts. As shown in Figure 5c for a random sample of points from 371 

different Class 3 events, PRCP anomalies are mixed, with a negative signal only evident in the 2 372 

pentads before onset, and positive anomalies seen at longer leads and even after flash drought 373 

onset. EVP is consistently elevated before and during onset, while strongly positive TMP, VPD, 374 

and PEVP anomalies emerge only in the two pentads before onset. Interestingly, RZSM and NDVI 375 

anomalies are, on average for this sample, positive until two pentads before onset, such that the 376 



19 

rapid decline observed just before onset leads to negative anomalies that are substantially smaller 377 

than those observed for Class 2 events at date of onset.       378 

Class 1, for its part, is noteworthy for the fact that air temperature and evaporative demand 379 

preceding flash drought onset are unremarkable compared to average conditions. Precipitation is 380 

below average in the pre-drought period, skies are relatively clear (low TCC), and convective 381 

potential is low (negative CAPE anomaly). But anomalies in all other variables commonly invoked 382 

to explain the rapidity of flash drought intensification are modest, i.e., there is a near-zero 383 

temperature, PEVP and VPD pre-drought anomalies. In this sense, Class 1 flash droughts appear 384 

to be dominated by precipitation deficit forcing rather than evaporative demand forcing, placing 385 

them at a far end of the PEVP vs. PRCP balance of flash drought forcings described by Christian 386 

et al. (2021). As described later, Class 1 events are, on average, slightly less severe than other 387 

classes, but they are not always low severity events. We will refer to these events as “stealth” flash 388 

droughts in that they have characteristics that would make them difficult to forecast: where Classes 389 

2 and 3 show meteorological drivers that might be forecasted with skill at extended weather to 390 

subseasonal timescales, Class 1 appears to be the product almost solely of moderately dry 391 

antecedent soil moisture and below average rainfall, which can be difficult to predict with precision 392 

more than a few days in advance (Tian et al. 2017). The sample timeseries shown in Figure 5a 393 

indicates that positive anomalies in VPD and PEVP are modest and emerge only within two 394 

pentads of onset, and TMP anomalies are essentially neutral. Interestingly, the decline in NDVI is 395 

dramatic for this class, suggesting that these events strike vegetation that is particularly sensitive 396 

to drought stress on account of vegetation type or timing. The fact that NDVI anomalies are 397 

strongly positive at three and four pentad leads, and that negative EVP signals are not evident at 398 
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longer leads, suggests that these events might be associated with favorable early season growing 399 

conditions leading to structural overshoot in vegetation (Zhang et al., 2021). 400 

At the national scale, 45% of all flash drought events in our inventory are Class 1, 31% are Class 401 

2, and 22% are Class 3. But there are distinct geographic patterns for each (Figure 6). Class 1 402 

events are most common in the western High Plains, Class 2 are dominant in the Southern Great 403 

Plains and Texas, and Class 3 are the most common type in the upper Midwest. This is not a 404 

deterministic split—all three classes are found in all regions—but the geographic distribution 405 

aligns with expectation. In the relatively humid and cool upper Midwest, one might expect that 406 

high TMP and VPD can trigger elevated EVP even when soils are somewhat dry relative to their 407 

average state, while in the warmer and drier Southern Great Plains those conditions are less likely 408 

to be met with increased EVP: conditions are simply too dry. The prevalence of Class 1 events in 409 

the western High Plains is less easily explained, but it is consistent with experience in that the 410 

iconic 2017 flash drought that affected Montana and North Dakota was a notably poorly predicted 411 

event (Jencso et al. 2019; Hoell et al. 2019b) .    412 

Indeed, if we map the class associations of the 2017 flash drought event, along with the seminal 413 

flash drought events of 2011 and 2012 (Figure 7), we see that 2017 was almost entirely Class 1. 414 

The 2011 event, focused on Texas and Oklahoma, is predominantly Class 2. The widespread event 415 

of 2012 is a mix of Class 2 and Class 3, consistent with the fact that this was a hot event affecting 416 

a broad swath of the Great Plains and Midwest, including a diversity of climate zones and land 417 

cover types.   418 

Seasonally, all three flash drought classes can be observed in any month included in our analysis 419 

(March-November; Figure 8). Class 2 shows a dramatic peak in June, coincident with the onset of 420 

summer heat and dryness over much of the drought-susceptible United States. Class 3 shows a 421 
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similar, albeit more muted June peak. This is the least common flash drought class on average, but 422 

in the spring it does show slightly greater total area than Class 2, and the drop in area after June is 423 

dramatic. This is consistent with a drought process that includes sufficient available soil moisture 424 

to support elevated EVP. Class 1, meanwhile, is the most widespread drought class in all months 425 

except for June, when it is briefly exceeded by Class 2. The fact that Class 1 events continue to be 426 

relatively common in late summer is in part a reflection of geography, since these events dominate 427 

in some of the coolest portions of the analysis domain. The drivers of flash drought risk, then, 428 

appear to vary by both region and season, a fact that is relevant for the development of flash 429 

drought risk monitoring and forecasting systems. We note that these seasonal patterns are sensitive 430 

to our inventory method, which is subject to the previously discussed assumptions, and clustering 431 

may vary accordingly. We note that our inventory method, which includes only the first instance 432 

of flash drought in each grid cell in each year, may slightly underrepresent late season flash 433 

droughts in general, since in cases of two flash droughts in the same location in the same year 434 

(which are rare) the second event would not be captured by our method. 435 

Finally, we find that all three diagnosed classes of flash drought include cases of severe drought 436 

(according to our created inventory of flash droughts severity from Eq. 1 and Eq. 2), but that there 437 

are statistical differences in severity between classes, as estimated using the SMVI severity classes 438 

defined in this study (Figure 9). There is a slight tendency for greater severity in Class 2, the “dry 439 

and demanding” droughts, and the most severe events in the record are dominated by Class 2, 440 

followed by slightly decreased average severity for Class 3 and Class 1. The differences in severity 441 

between classes are statistically significant, as evaluated using a Welch t-test, for both raw and log 442 

transformed data, and confirmed with a non-parametric Wilcoxon signed-rank test. This result 443 

emphasizes the potential severity of flash droughts that develop under the combined conditions of 444 



22 

high evaporative demand, low precipitation, and dry antecedent conditions. Nevertheless, the 445 

distribution of event severities shown in Figure 9 makes it clear that all three classes contain severe 446 

events. This is also clear from our analysis of seminal flash droughts (Figure 1). We note that 447 

Figure 9 shows results for events filtered for severity greater than 2, but that the same general 448 

pattern is observed when we do not apply a severity threshold. 449 

Conclusions: 450 

Flash drought has proven to be a challenging phenomenon for both monitoring and prediction. 451 

These challenges have been associated with the rapidly evolving nature of the events and, perhaps, 452 

with the fact that they depend on processes that may not be explicitly resolved, or may be poorly 453 

predicted, in standard subseasonal to seasonal forecast systems. But terminology and definitions 454 

have also been challenging (Lisonbee et al. 2021), and the difficulty of establishing consistent and 455 

agreed-upon definitions is also a significant contributor to associated challenges in prediction. If 456 

the physical interpretation of a flash drought inventory is not sufficiently clear, then it is also not 457 

clear what one is predicting with a statistical model trained using that inventory, or what one is 458 

evaluating when considering a dynamically-based forecast of an event.  459 

Here, we have examined meteorological drivers associated with events inventoried using an 460 

SMVI-based definition of flash drought events, and then classified all events in the inventory on 461 

the basis of precursor meteorological and surface conditions. We found three classes of flash 462 

droughts in our inventory based on K-means clustering. We refer to these classes as: "dry and 463 

demanding" droughts, with high evaporative demand and antecedent low soil moisture levels; 464 

"evaporative" droughts, which initiate under conditions of high demand and when elevated 465 

evapotranspiration accelerates soil drying; and "stealth" droughts, which may be hard to predict 466 
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due to the lack of a clear temperature or evaporative demand signal prior to initiation. These classes 467 

are associated with different meteorological variables, regional distributions, seasonality, and 468 

climatic and land surface risk factors, suggesting that there are distinct forms of flash drought 469 

development. 470 

We emphasize that the classes defined here are representative of a continuum of processes 471 

associated with flash drought development. We choose to work with three classes because it 472 

proved to be a stable, separable, and interpretable number of classes in our analysis, but the result 473 

does not imply that there are only three pathways that can lead to flash drought, or that an event 474 

cannot exhibit a mix of properties from two or three classes. The contrasting meteorological and 475 

surface process signatures of the three classes do, however, indicate that events identified as “flash 476 

drought” using a reasonable definition, including events that have been widely reported as seminal 477 

flash droughts, represent a diversity of onset and intensification processes. Our results suggest that 478 

recognizing this diversity is critical to advance our understanding and ability to predict these 479 

events. 480 
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Tables: 637 

Table 1: SMVI-NASS and SMVI-NDVI summary hit-miss statistics for the 2012 central region 638 

flash drought showing the geographically dominant crops and observed soil moisture conditions. 639 

 Corn Range Soybean Sub-soil Topsoil Av. Crop Cond NDVI 

ACC 0.74 0.74 0.78 0.84 0.77 0.75 0.68 

CSI 0.71 0.73 0.76 0.84 0.76 0.73 0.63 

        

FDR 0.21 0.07 0.16 0.05 0.05 0.11 0.26 

FNR 0.12 0.22 0.10 0.13 0.21 0.20 0.19 

FPR 0.65 0.55 0.64 0.50 0.38 0.51 0.60 

        

        

PPV 0.79 0.93 0.84 0.95 0.95 0.89 0.74 

TNR 0.35 0.45 0.36 0.50 0.62 0.49 0.40 

TPR 0.88 0.78 0.90 0.87 0.79 0.80 0.81 

 640 

Table 2: As in Table 1, but for the 2017 northern high plains region flash drought. 641 

 Barley Oats Spring Wheat Winter Wheat Sub-soil Topsoil Av. Crop Cond NDVI 

ACC 0.80 0.73 0.76 0.78 0.84 0.84 0.72 0.56 

CSI 0.79 0.72 0.75 0.77 0.83 0.83 0.70 0.48 

         

FDR 0.09 0.15 0.12 0.08 0.03 0.02 0.18 0.50 

FNR 0.15 0.18 0.16 0.17 0.15 0.16 0.17 0.07 
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FPR 0.55 0.73 0.65 0.61 0.29 0.25 0.72 0.72 

         

         

PPV 0.91 0.85 0.88 0.92 0.97 0.98 0.82 0.50 

TNR 0.45 0.27 0.35 0.39 0.71 0.75 0.28 0.28 

TPR 0.85 0.82 0.84 0.83 0.85 0.84 0.83 0.93 

 642 
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Figures: 643 

 644 

Figure 1: Flash drought maps as captured by SMVI definition during the active growing season 645 

(Mar-Nov). left column for 2012 and the right column for 2017. Panels (a) and (b): Onset maps 646 

where each color represents the month of flash drought onset. Bottom row: Estimated severity 647 

category maps. 648 
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 649 

Figure 2: Maps of hit-miss analysis for the 2012 and the 2017 flash droughts during the actively 650 

growing season (Mar-Nov). Left column for 2012 and right column for 2017. Panels (a) and (b): 651 

SMVI vs. negative NDVI anomaly hit-miss map, in which lavender represents False Positive (FP), 652 

orange represents True Positive (TP), white represents True Negative (TN), green represents 653 

False Negative (FN), and grey represents missing/unavailable data. Panels (c) and (d): similar to 654 

(a) and (b)for NASS reported negative average crop conditions. Panels (e) and (f): similar to (a) 655 

and (b)for the observed topsoil moisture. 656 
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 657 
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Figure 3: Composite maps of standardized anomalies of climate conditions for selected 658 

atmospheric variables (TEMP: 2-m above ground Temperature, PRCP: Precipitation, RZSM: 659 

Root-zone soil moisture, EVP: Actual evapotranspiration, PEVP: Potential evapotranspiration, 660 

SPRESS: Surface pressure, TCC: Total cloud cover, WS: 10-m above ground wind speed and 661 

CAPE: Convective Available Potential Energy, VPD = Vapor Pressure Deficit) based on the full 662 

SMVI flash droughts inventory from 1979-2018 for severity higher than ‘2’, during onset, 663 

recovery, and onset minus 3 pentads.  664 

  665 

 666 

Figure 4: Box plot of the standardized anomalies of atmospheric variables and root zone soil 667 

moisture averaged for the three pentads before drought onset for each Class for the full SMVI 668 

inventory from 1979 to 2018. A separate figure for each of the fields' variability across years is 669 
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shown in Figure S4. Maps of the anomalies averaged over the three pentads prior to onset are 670 

shown in Figure S5. 671 

 672 
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 673 

Figure 5: Daily time series plots of selected atmospheric variables and RZSM from four pentads 674 

prior to drought onset to one pentad after onset for (a) Class 1, (b) Class 2, and (c) Class 3 events. 675 
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For each class, the time series of each variable represents an average of 20 grid cells, each 676 

selected from the core area of a separate flash drought event. The Y-axis shows the standard 677 

deviation for the normalized variables’ values. 678 

  679 
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Figure 6: Frequency (% of years with an event) for each flash drought class at each grid point for 681 

the period 1979 to 2018, based on the SMVI flash droughts definition.  682 
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Figure 7: Classification maps of the 2011, 2012 and 2017 flash drought events. 684 

 685 

 686 

Figure 8: Average area in each flash drought class in each month included in this study. Average 687 

is calculated for the 1979-2018 period. 688 
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 689 

 690 

Figure 9: Box plots of the flash droughts average severity categories in the three classes after 691 

filtering out events of severity category less than 2 (box widths are proportional to the square root 692 

of the total number of grid-points in each class). 693 


